Методы экстраполяции

Реферат

Министерство образования и науки Российской Федерации

Муниципальное бюджетное образовательное учреждение высшего профессионального образования

Волжский институт экономики педагогики и права

Факультет менеджмента

Кафедра менеджмента

Реферат

по дисциплине «Исследование систем управления»

«Методы экстраполяции»

Работу выполнила Луговая А.С.

Работу проверила: Баева Л.Р.

Волжский 2016

Экстраполяция — это метод научного исследования, который основан на распространении прошлых и настоящих тенденций, закономерностей, связей на будущее развитие объекта прогнозирования. Методы экстраполяции наиболее распространенные в группе формализованных.

Цель методов экстраполяции — показать, к какому состоянию в будущем может прийти объект, если его развитие будет осуществляться с той же скоростью или ускорением, что и в прошлом.

Различают: а) формальная экстраполяция — базируется на предположении о сохранении в будущем прошлых и настоящих тенденций развития объекта прогноза. б) прогнозная экстраполяция — фактическое развитие увязывается с гипотезами о динамике исследуемого процесса с учетом изменений влияния разных факторов в перспективе. Методы экстраполяции относятся к формализованным методам. Методы экстраполяции являются наиболее распространенными и проработанными. Основу экстраполяционных методов прогнозирования составляет изучение динамических рядов. Динамический ряд — это множество наблюдений, полученных последовательно во времени.

Методы экстраполяции достаточно широко применяются на практике, так как они просты, дешевы, и не требуют для расчетов большой статистической базы. Использование методов экстраполяции предполагает два допущения: а) основные факторы, тенденции прошлого сохранят свое проявление в будущем; б) исследуемое явление развивается по плавной траектории, которую можно выразить, описать математически. Названные допущения в большинстве случаев характерны для экономических процессов.

Применяются, как правило, следующие методы:

  • метод скользящей средней
  • метод подбора функции
  • метод наименьших квадратов
  • метод экспоненциального сглаживания с регулируемым трендом

Метод скользящей средней дает возможность выравнивать динамический ряд на основе его средних характеристик. При экстраполяции с помощью среднего уровня ряда используется принцип, при котором прогнозируемый уровень принимается равным среднему значению уровней ряда в прошлом. экстраполяция прогнозирование динамический

6 стр., 2602 слов

Методы социально-психологической диагностики проблем семьи

... этапах их жизни. Психологи используют различные методы социально-психологической диагностики: опрос, наблюдение, эксперимент, метод социометрии, методы поперечных и продольных срезов, количественно-качественный анализ ... к семейной жизни (И.Ф. Юнда) — помогает определить готовность будущих супругов выполнять семейные функции: создание положительного семейного фона, поддержание уважительных, ...

Данный метод дает прогнозную точечную оценку и более эффективно используется при краткосрочном прогнозировании. Преимущество данного метода состоит в том, что он прост в применении и не требует обширной информационной базы.

Метод подбора функций — выбор оптимального вида функции, описывающей эмпирический ряд. Задача выбора функции заключается в подборе по фактическим данным формы зависимости (линии) так, чтобы отклонения данных исходного ряда, от соответствующих расчетных, находящихся на линии, были наименьшими. После этого можно продолжить эту линию и получить прогноз.

Метод экспоненциального сглаживания с регулируемым трендом — позволяет построить такое описание процесса (динамического ряда), при котором более поздним наблюдениям придаются большие «веса» по сравнению с более ранними, причем «веса» наблюдений убывают по экспоненте. В результате создается возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения.

Скорость старения данных характеризует параметр сглаживания а. Он изменяется в пределах 0 < а < 1. Чем больше а, тем больше вклад последних наблюдений в формирование тренда, а влияние начальных условий быстро убывает. В области экономического прогнозирования наиболее употребимы пределы 0,05 < а < 0,3. Значение а в общем случае должно зависеть от срока прогнозирования: чем меньше срок, тем большим должно быть значение параметра.

Метод экспоненциального сглаживания дает возможность выявить тенденцию, сложившуюся к моменту последнего наблюдения, и позволяет оценить параметры модели, описывающей тренд, который сформировался в конце базисного периода. Этот метод адаптируется к меняющимся во времени условиям, а не просто экстраполирует действующие зависимости в будущее.

Метод экспоненциального сглаживания наиболее эффективен при разработке кратко- и среднесрочных прогнозов. Его основные достоинства заключаются в простоте вычисления и учете весов исходной информации, т. е. новые данные или данные за последние периоды имеют больший вес, чем данные более отдаленных периодов.

При использовании для прогнозирования данного метода возникают следующие затруднения: а) выбор значения параметра сглаживания; б) определение начального значения экспоненциально взвешенной средней.

Метод наименьших квадратов основан на выявлении параметров модели, которые минимизируют суммы квадратических отклонений между наблюдаемыми величинами и расчетными. Модель, описывающая тренд, в каждом конкретном случае подбирается в соответствии с рядом статистических критериев. На практике наибольшее распространение получили такие функции, как линейная, квадратическая, экспоненциальная, степенная, показательная.

22 стр., 10618 слов

Методы социально-экономического прогнозирования

... и методик разработки социально экономических прогнозов для определения сущности, областей применения и наиболее эффективных методов прогнозирования. Для этого необходимо решить следующие задачи: определить сущность методов социально-экономического прогнозирования и области их ...

Метод наименьших квадратов — расчет параметров (а, b) для конкретной функциональной зависимости Параметры модели тренда должны минимизировать отклонения расчетных значений от соответствующих значений исходного ряда. Выбор модели осуществляется с помощью специально разработанных программ. Есть программы, предусматривающие возможность моделирования экономических рядов по 16-ти функциям: линейной (y = а + b * х), гиперболической различных типов (у = а + b / х), экспоненциальной, степенной, логарифмической и др. Каждая из них может иметь свою, специфическую область применения при прогнозировании экономических явлений.

Так, линейная функция применяется для описания процессов, равномерно развивающихся во времени. Параметр b (коэффициент регрессии) показывает скорость изменения прогнозируемого у при изменении х. Гиперболы хорошо описывают процессы, характеризующиеся насыщением, когда существует фактор, сдерживающий рост прогнозируемого показателя.

Модель выбирается, во-первых, визуально, на основе сопоставления вида кривой, ее специфических свойств и качественной характеристики тенденции экономического явления; во-вторых, исходя из значения критерия. В качестве критерия чаще всего используется сумма квадратов отклонений — из совокупности функций выбирается та, которой соответствует ее минимальное значение.

Прогноз предполагает продление тенденции прошлого, выражаемой выбранной функцией, в будущее, т.е. экстраполяцию динамического ряда. Программным путем на ЭВМ определяется значение прогнозируемого показателя. Для этого в формулу, описывающую процесс, подставляется величина периода, на который необходимо получить прогноз.

В связи с тем, что этот метод исходит из инерционности экономических явлений и предпосылок, что общие условия, определяющие развитие в прошлом, не претерпят существенных изменений в будущем, его целесообразно использовать при разработке краткосрочных прогнозов обязательно в сочетании с методами экспертных оценок. Причем динамический ряд может строиться на основании данных не по годам, а по месяцам, кварталам.

Преимущества метода наименьших квадратов заключаются в том, что он прост в применении и реализуется на ЭВМ. К недостаткам метода можно отнести жесткую фиксацию тренда моделью, небольшой период упреждения, сложность подбора уравнения регрессии, который осуществляется с помощью использования типовых компьютерных программ, например Excel.

Список используемой литературы

[Электронный ресурс]//URL: https://psystars.ru/referat/metod-ekstrapolyatsii-v-sotsiologii-upravleniya/

1. [Электронный ресурс]-

2. [Электронный ресурс]- http://www.monographies.ru/

3. [Электронный ресурс]-

4. [Электронный ресурс]- http://www.bibliotekar.ru/