Нейрон: его строение, виды и функции

Реферат

(от др.-греч. не?спн — волокно, нерв) — это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высокоспециализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более восьмидесяти пяти миллиардов нейронов.

Нейрон — это главный элемент «биологического процессора», позволяющего животным приспосабливаться к окружающей среде, а человеку — еще и мыслить и чувствовать. По своему строению нейрон — высокоспециализированная клетка нервной системы, способная генерировать и проводить электрические импульсы. В процессе онтогенеза нейроны потеряли способность к размножению.

Как правило, нейрон имеет звездчатую форму, благодаря чему в нём различают тело ( сому ) и отростки (аксон и дендриты ).

Аксон у нейрона всегда один, хотя он может ветвиться, образуя два и более нервных окончания, а дендритов может быть достаточно много. По форме тела можно выделить звездчатые, шаровидные, веретенообразные, пирамидные, грушевидные ит.д. Некоторые разновидности нейронов, отличающихся по форме тела, приведены на Рис. 4.5.

униполярные

Размеры нейронов колеблются от 5 до 120 мкм и составляют в среднем 10-30 мкм. Самыми большими нервными клетками человеческого тела являются мотонейроны спинного мозга и гигантские пирамиды Беца коры больших полушарий. И те и другие клетки являются по своей природе двигательными, и их величина обусловлена необходимостью принять на себя огромное количество аксонов от других нейронов. Подсчитано, что на некоторых мотонейронах спинного мозга имеется до десяти тысяч синапсов.

чувствительные

Таким образом, все классификации нейронов можно свести к трем, наиболее часто применяемым (см. Рис. 4.7):

Функции нейронов

Материалом для построения ЦНС и ее проводников является нервная ткань, состоящая из двух компонентов — нервных клеток (нейронов) и нейроглии. Основными функциональными элементами ЦНС являются нейроны: в теле животных их содержится примерно 50 млрд, из которых лишь небольшая часть расположена на периферических участках тела.

Исследователи определили, какие нервные клетки в мозгу у птиц отвечают за обработку информации о магнитном поле.

Во время миграций птицы пролетают тысячи и тысячи километров, ни разу не сбиваясь с курса. В этом им помогает чувство магнитного поля Земли: ни зрение, ни обоняние большой роли тут не играют. О том, что птицы обладают магнитным чувством, известно давно, но никак не удавалось понять, чем они определяют силу поля и его направление. Долгое время, например, в связи с этим обсуждали частицы магнетита, обнаруживавшиеся у птиц в разных частях головы. Считалось, что клетки с этим минералом как раз и улавливают магнитное поле. Некоторые исследователи предлагали на роль компаса клюв, так как именно там магнетит находили чаще всего.

13 стр., 6150 слов

Нейроны. Общая характеристика. Строение. Функции. Нейросекреторные нейроны

... нервной ткани — нейрон. К числу основных задач относятся изучение общей характеристики, строения, функций нейронов, а также подробное рассмотрение одних из особых типов нервных клеток — нейросекркторных нейронов. Глава 1. Общая характеристика нейронов Нейроны — специализированные клетки, ...

Однако не так давно выяснилось, что за птичий магнетит принимали совсем другую форму железа, которая вообще-то содержится в белых кровяных клетках и помогает обезвреживать токсины. У этих частиц магнитные свойства выражены намного слабее, и работать антеннами для магнитного поля Земли они не могут. Однако исследователи из Университета Бейлора (США) нашли ещё одни магнетитовые частицы — на этот раз во внутреннем ухе у голубей. Свои данные они подкрепили экспериментами, в которых у птиц менялась активность некоторых отделов мозга в ответ на изменения магнитного поля, и эти мозговые зоны имели непосредственное отношение к внутреннему уху.

В новой статье, опубликованной в журнале Science, исследователи рассказывают, как им удалось посчитать у голубей «магнитные» нейроны. Учёные сажали птиц в тёмную комнату, в которой с помощью магнитных катушек можно было менять силу и направление поля. Во время эксперимента имитировались изменения, которые птицы почувствовали, если бы в полёте пересекали магнитные линии Земли. Одновременно учёные следили за активностью 329 нервных клеток в одном из участков мозга, которые, согласно предыдущим работам, реагировали на такие изменения. Среди них удалось обнаружить 53 нейрона, которые довольно точно реагировали на изменения силы и полярности магнитного поля. Эти клетки, по словам исследователей, позволяли птицам не только точно определить широту и долготу, но и отличить Северное полушарие от Южного, а также оценить направление полёта.

Описанные нейроны не сами чувствуют магнитное поле: они, видимо, лишь обрабатывают информацию, которая приходит к ним от рецепторов. Хотя по-прежнему неясно, что у птиц служит рецептором именно магнитного поля, с новыми данными это будет легко выяснить: достаточно проследить, от каких клеток, тканей и органов «магнитные» нейроны получают данные для обработки.

Нейроны составляют 10 — 15 % общего числа клеточных элементов в нервной системе. Основную же часть ее занимают клетки нейроглии.

У высших животных в процессе постнатального онтогенеза дифференцированные нейроны не делятся. Нейроны существенно различаются по форме (пирамидные, круглые, звездчатые, овальные), размерами (от 5 до 150 мкм), количеству отростков, однако они имеют и общие свойства. нейрон нервный память рецептор

Любая нервная клетка состоит из тела (сомы, перикариона) и отростков разного типа — дендритов (от лат. дендрон — дерево) и аксона (от лат. аксон — ось).

В зависимости от числа отростков различают униполярные (одноотростковые), биполярные (двухотростковые) и мультиполярные (многоотростковые) нейроны. Для ЦНС позвоночных типичны биполярные и особенно мультиполярные нейроны.

Дендритов может быть много, иногда они сильно ветвятся, различной толщины и снабжены выступами — “шипиками”, которые сильно увеличивают их поверхность.

15 стр., 7169 слов

Содержание ДНК в нервных клетках

... клетки нервной системы. Замечено, что прогрессивные нарушения функционирования нервных клеток в стареющем мозге человека и животных коррелируют с постепенным накоплением повреждений в их ДНК. При действии умеренных доз гамма-облучения в нейронах и глиальных клетках ...

Аксон (нейрит) всегда один. Он начинается от сомы аксонным холмиком, покрыт специальной глиальной оболочкой, образует ряд аксональных окончаний — терминалий. Длина аксона может достигать более метра. Аксонный холмик и часть аксона, не покрытая миелиновой оболочкой, составляют начальный сегмент аксона; его диаметр невелик, (1 — 5 мкм).

В ганглиях спинно- и черепномозговых нервов распространены так называемые псевдоуниполярные клетки; их дендрит и аксон отходят от клетки в виде одного отростка, который затем Т-образно делится.

Отличительными особенностями нервных клеток являются крупное ядро (до 1/3 площади цитоплазмы), многочисленные митохондрии, сильно развитый сетчатый аппарат, наличие характерных органоидов — тигроидной субстанции и нейрофибрилл. Тигроидная субстанция имеет вид базофильных глыбок и представляет собой гранулярную цитоплазматическую сеть с множеством рибосом. Функция тигроида связана с синтезом клеточных белков.

При длительном раздражении клетки или перерезке аксонов это вещество исчезает. Нейрофибриллы — это нитчатые, четко выраженные структуры, находящиеся в теле, дендритах и аксоне нейрона. Образованы еще более тонкими элементами — нейрофиламентами при их агрегации с нейротрубочками.

Выполняют, по-видимому, опорную функцию.

В цитоплазме аксона отсутствуют рибосомы, однако имеются митохондрии, эндоплазматический ретикулум и хорошо развитый аппарат нейрофиламентов и нейротрубочек. Установлено, что аксоны представляют собой очень сложные транспортные системы, причем за отдельные виды транспорта (белков, метаболитов, медиаторов) отвечают, по-видимому, разные субклеточные структуры.

В некоторых отделах мозга имеются нейроны, которые вырабатывают гранулы секрета мукопротеидной или гликопротеидной природы. Они обладают одновременно физиологическими признаками нейронов и железистых клеток. Эти клетки называются нейросекреторными.

Функция нейронов заключается в восприятии сигналов от рецепторов или других нервных клеток, хранении и переработке информации и пере даче нервных импульсов к другим клеткам — нервным, мышечным или секреторным.

Соответственно имеет место специализация нейронов. Их подразделяют на 3 группы: чувствительные (сенсорные, афферентные) нейроны, воспринимающие сигналы из внешней или внутренней среды; ассоциативные (промежуточные, вставочные) нейроны, связывающие разные нервные клетки друг с другом; двигательные (эффекторные) нейроны, передающие нисходящие влияния от вышерасположенных отделов ЦНС к нижерасположенным или из ЦНС к рабочим органам.

Тела сенсорных нейронов располагаются вне ЦНС: в спинномозговых ганглиях и соответствующих им ганглиях головного мозга. Эти нейроны имеют псевдоуниполярную форму с аксоном и аксоноподобным дендритом.

К афферентным нейронам относятся также клетки, аксоны которых составляют восходящие пути спинного и головного мозга.

Ассоциативные нейроны — наиболее многочисленная группа нейронов.

Они имеют более мелкий размер, звездчатую форму и аксоны с многочисленными разветвлениями; расположены в сером веществе мозга. Осуществляют связь между разными нейронами, например чувствительным и двигательным в пределах одного сегмента мозга или между соседними сегментами; их отростки не выходят за пределы ЦНС.

9 стр., 4097 слов

Мозг и память человека

... лекарственные вещества. 1.1. Клетки мозга Клетки ЦНС называются нейронами; их функция – обработка информации. В мозгу человека от 5 до 20 млрд. нейронов. В состав мозга входят также глиальные клетки, их примерно в ... 10 раз больше, чем нейронов. Глия заполняет пространство между нейронами, образуя ...

Двигательные нейроны также расположены в ЦНС. Их аксоны участвуют в передаче нисходящих влияний от вышерасположенных участков мозга к нижерасположенным или из ЦНС к рабочим органам (например, мотонейроны в передних рогах спинного мозга).

Имеются эффекторные нейроны и в вегетативной нервной системе. Особенностями этих нейронов являются разветвленная сеть дендритов и один длинный аксон.

Воспринимающей частью нейрона служат в основном ветвящиеся дендриты, снабженные рецепторной мембраной. В результате суммации местных процессов возбуждения в наиболее легковозбудимой триегерной зоне аксона возникают нервные импульсы (потенциалы действия), которые распространяются по аксону к концевым нервным окончаниям. Таким образом, возбуждение проходит по нейрону в одном направлении — от дендритов к соме и аксону.

Роль нейронов в процессах памяти

Память — это ни то иное, как набор рецепторов и процессоров, зафиксированных в мозге человека или животного, а также набор связей между рецепторами и процессорами.

Память может быть врожденной или приобретенной, в зависимости от того, заложены эти структуры и связи в нашем мозге генетически или формируются при жизни.

Обучение, то есть возможность перестройки межнейронных связей, обнаружена даже у довольно примитивных животных — червей, моллюсков, низших насекомых. Однако у высших животных способность к обучению несравнимо совершеннее, особенно у человека. И связано это не только с развитием многоклеточных рецепторов и процессоров, но и с появлением специализированных ассоциативных нейронов, а также принципиально новых способов влияния на них. Ассоциативные нейроны, находящиеся в структуре рецепторов или процессоров, являются носителями приобретенной памяти, так как обеспечивают переход команды или сигнала с формированием новых двигательных и воспринимающих структур.

У низших животных прямое многократное воздействие раздражителя является достаточным условием для активации ассоциативного нейрона и изменения структуры нейронной сети.

У человека же эволюционно первичные сети памяти дополнены нейронными сетями, содержащими нейроны — резонаторы, позволяющие однократное воздействие переводить в многократное. Совокупностью таких нейронов — резонаторов в мозге человека является парный орган, называемый гиппокампом. Следует также добавить, что гиппокамп у низших хордовых — совокупность процессоров обонятельной модальности. У человека же гиппокамп — совокупность процессоров — резонаторов, играющий ключевую роль в механизме памяти. В процессе эволюции смена функциональной роли гиппокампа произошла на этапе высших приматов.

Виды нейронов:

1) по локализации:

  • а) центральные (головной и спинной мозг);
  • б) периферические (мозговые ганглии, черепные нервы);

2) в зависимости от функции:

  • а) афферентные;
  • б) вставочные;
  • в) эфферентные;

3) в зависимости от функций:

  • а) возбуждающие;
  • б) тормозящие.