История развития металлургии

Реферат

Металлургия — это область науки и техники, отрасль промышленности. К металлургии относятся: производство металлов из природного сырья и других металлсодержащих продуктов; получение сплавов; обработка металлов в горячем и холодном состоянии; сварка; нанесение покрытий из металлов; область материаловедения, изучающая физическое и химическое поведение металлов. К металлургии примыкает разработка, производство и эксплуатация машин, аппаратов, агрегатов, используемых в металлургической промышленности. Металлургия подразделяется на чёрную и цветную. Чёрная металлургия включает добычу и обогащение руд чёрных металлов, производство чугуна, стали и ферросплавов. К чёрной металлургии относят также производство проката чёрных металлов, стальных, чугунных и других изделий из чёрных металлов. К цветной металлургии относят добычу, обогащение руд цветных металлов, производство цветных металлов и их сплавов. К чёрным металлам относят железо. Все остальные — цветные. По физическим свойствам и назначению цветные металлы условно делят: тяжёлые металлы (медь, свинец, цинк, олово, никель); лёгкие (алюминий, титан, магний).

По основному технологическому процессу подразделяется на пирометаллургию (плавка) и гидрометаллургию (извлечение металлов в химических растворах).

Разновидностью пирометаллургии является плазменная металлургия. Самыми распространенными металлами являются:

прогресс, так как получение железа из руды и выплавка металла было гораздо сложнее. Считается, что технология была изобретена хеттами примерно в 1200 году до н. э. Именно это время считается на сегодняшний день официальной датой вступления человечества в железный век. Сам же секрет добычи и изготовления железа стал ключевым фактором могущества филистимлян, которые и считаются первопроходцами в этой области. Следы развития чёрной металлургии можно отследить во многих прошлых культурах и цивилизациях. Сюда входят древние и средневековые королевства и империи Среднего Востока и Ближнего Востока, древний Египет и Анатолия (Турция), Карфаген, греки и римляне античной и средневековой Европы, Китай, Индия, Япония и т. д. Нужно заметить, что многие методы, устройства и технологии металлургии первоначально были придуманы в Древнем Китае, а потом и европейцы освоили это ремесло (изобретя доменные печи, чугун, сталь, гидромолоты и т. п.).

12 стр., 5520 слов

Современные технологии и информационные системы в промышленном ...

... для гибкого, переналаживаемого производства Промышленные роботы (ПР) оказались тем недостающим звеном, появление которого позволило решать задачи комплексной автоматизации на более высоком уровне, объединяя средства производства предприятия в единый ...

Не смотря ни на что, все последние данные, установленные учёными в результате [3].

1. Развитие металлургии

бессемеровский, мартеновский и томасовский

В середине XX века внедряются кислородное дутье, автоматизация процесса и непрерывная разливка стали. Продувка кислородом расплавленного металла в бессемеровском конверторе из-за резкого увеличения поверхности соприкосновения металла с окислителем (кислородом) в тысячу раз ускоряет химические реакции по сравнению с пудлинговой печью.

В сыродутном и кричном процессах получали одностадийным методом ковкое, качественное сварочное железо (малоуглеродистую сталь), причём имеющее небольшое количество примесей, поэтому весьма стойкое к коррозии. История сделала круг и в настоящий момент разрабатываются и развиваются технологии одностадийного процесса производства стали через обогащение руд (получение окатышей, содержащих 90-95 % железа) и выплавку стали в электропечи. [2]

2. Особенности развития металлургии в Европе

В то время как на Востоке успешно развивали технологию тигельной плавки высококачественной стали из природно — легированных руд, на Западе происходило постепенное освоение других металлургических технологий.

Как известно, во 2-й половине 1-го тысячелетия лидерство в политической жизни Европы принадлежало викингам, франкам и государствам, располагавшимся в Альпийском регионе. Рассмотрев историю Древнего мира, мы уже знаем, что политическая гегемония с древнейших времен базировалась на металлургическом фундаменте.

Ландшафт как важнейший металлургический ресурс

В раннем Средневековье сама природа способствовала развитию технологий металлургии железа в Скандинавии и Альпийском регионе. В этих регионах были в достатке легкодоступные богатые железные руды. Сначала их извлекали непосредственно на поверхности земли, а по мере истощения открытых месторождений железную руду стали добывать из штолен — горизонтальных или наклонных горных выработок.

Такое ведение горной добычи особенно широко практиковалось именно в Альпах, где распространенным видом геологической структуры являются «горсты», т.е. поднятые по разломам участки земной коры, богатые рудами металлов.

В Европе горсты образуют вершины с крутым обрывистым южным склоном и пологим северным с максимальной высотой 1000—1300 метров над уровнем моря. Классическими примерами горстов являются горы Гарц, что на территории современных Германии, Австрии и Италии, Вогезы на северо-востоке Франции, Рудные в Чехии и Германии.

Помимо залежей руд цветных и черных металлов, горсты располагают лесистыми ущельями и быстрыми горными потоками. Таким образом, в распоряжении средневековых металлургов находились богатые ресурсы качественной древесины для выжига угля и мощные потоки воды для приведения в действие водоналивных колес.

Однако широкое использование дутьевых средств началось в конце тысячелетия, а до этого металлурги использовали, главным образом, естественное движение воздуха. И в этом виде ресурсов Скандинавия и Альпы предоставляли металлургам необходимые возможности.

Север Европы часто называют страной ветров, возможно, наиболее образно это отношение к природе Скандинавии и арктических архипелагов выразил великий французский романист Виктор Гюго, который писал: «…Северные фьорды и архипелаги — это царство ветров. Каждый глубоко врезающийся в побережье залив, каждый пролив между многочисленными островами превращается в поддувальный мех.

7 стр., 3316 слов

Образ вожатого

... высказывать суждения и умозаключения. Не хотелось бы, чтобы результатом этой оценочной деятельности стали такие детские выводы. "Да ну его, только и умеет командовать", "С ней ...

Постоянным движением воздуха отличается и Альпийский регион, особенно его древнейшая металлургическая провинция — Штирия. Таким образом, средневековый металлург, работавший с крупнейшими агрегатами своего времени, должен был быть специалистом-«ландшафтоведом», т.е. должен был уметь подобно мореплавателю, управляющему кораблем, «поймать ветер», чтобы извлечь железо из руды.

Сыродутные и «каталонские» горны

И в Скандинавии, и в Альпах в VII-VIII вв. стали строить сыродутные горны высотой больше человеческого роста, причем увеличение высоты агрегата происходило очень интенсивно и к концу тысячелетия печи строились высотой до 5 метров.

Какова же причина такого изменения конструкции агрегата? Из-начальное стремление к повышению производительности печи дало «побочный» эффект, который неожиданно превзошел первоначальные ожидания средневековых мастеров. Дело в том, что с увеличением высоты горнов в них стали существенно улучшаться условия теплооб-мена между опускающимися сверху железорудными материалами и поднимающимся снизу, от фурм, восстановительным газом (окси-дом углерода).

Можно сказать, что в печи появилось «дополнительное» тепло. В результате стали более полно проходить как реакции восстановления железа из оксидов, так и науглероживания свежевосстановленного железа. Таким образом, получаемая крица стала более равномерной по химическому составу, в ней повысилось содержание железа, а само железо стало более насыщеным углеродом. металлургия ферросплав горн

Таким образом, объем рабочего пространства пиренейских горнов составлял всего лишь 0,3—0,9 м3, что в 5-10 раз меньше объема штюкофенов. И, тем не менее, они практически не уступали своим высоким «собратьям» в производительности. (Необходимо отметить, что каталонский горн применялся только для заводского производства металла в средневековых Испании и Франции.)*

На каждом железоделательном заводе устраивалось не менее 10 каталонских горнов. Они располагались вдоль одной общей стены, которая строилась со стороны реки, где устраивались водоналивные колеса, приводящие в действие дутьевые мехи. Эта стена называлась «заводской». К ней примыкали «фурменная» и «противофурменная» стены. В фурменной стене под углом около 40° к уровню земли устанавливалась коническая, слегка сплюснутая фурма из красной меди длиной около 20 и диаметром 2—3 дюйма.

Противофурменная стена устанавливалась со значительным наклоном наружу и выполнялась с изогнутым сводом. В лицевой стене предусматривались два отверстия для ломов и выпуска шлака, а также специальное устройство для установки «шесточной» железной доски, которая меняла угол наклона для регулирования загрузки в горн шихтовых материалов.

С особой ответственностью строили дно горна. Его выполняли из цельного огнеупорного камня (гранита, песчаника или слюдяного сланца).

Верхнюю сторону камня тщательно обрабатывали, добиваясь, чтобы она была гладкой и немного вогнутой. Камни служили от 3 месяцев до полугода. Под камнем на старом мельничном жернове устраивалась «постель» из дробленого шлака и глины. Трубы над горном не было: выходом для образующихся газов служило отверстие в крыше заводского помещения.

Перед началом процесса горн тщательно чистили от остатков предыдущей плавки, затем засыпали древесный уголь до уровня фурмы и уплотняли его. На плотную «постель» древесного угля насыпали кусковую руду (как правило, это был бурый железняк), располагая ее по противофурменной стене. Дополнительные порции древесного угля размещали около фурменной стены.

7 стр., 3413 слов

Особенности религии и образа жизни разных народов

... погибнет и Локи разразится торжествующим хохотом. 2. Особенности образа жизни разных народов И сиу, и шайенны, и апачи, и ... и Пирра умерли, а отвергнутые ими поющие статуи стали требовать от богов суда и справедливости. Боги ... завезенных с Запада. Во время битвы Литтл Биг Горн 25 июня 1876 году объединилось самое большое ... человека из гончарной глины и поставил в печь. Но он слишком долго держал его там. ...

В ходе плавки, по мере выгорания угля и плавления руды, в горн вводили их новые порции, причем отсутствие жестких требований к газодинамическим параметрам шихтовых материалов позволяло использовать руду мелких фракций. Из рудной пыли делали смоченные водой комки, которые и загружали в горн. Периодически из горна выпускали шлак, пробивая специально предусмотренные для этого отверстия. Вообще же контакт крицы с железистым шлаком приносил существенную пользу, поскольку позволял перевести в шлак большую часть фосфора, присутствие которого в готовом металле существенно снижало его качественные характеристики.

Наиболее сложной являлась операция «опускания руды в горн», для выполнения которой между противофурменной стеной и рудой вставляли лом и, действуя им как рычагом, подвигали нижние слои руды к фурме. Сигналом к окончанию процесса служил белый цвет пламени, который указывал на начало окисления железа крицы. Обычная длительность плавки достигала 5—6 часов. Таким образом, за сутки успевали произвести 3—4 крицы массой 100—150 кг. После прекращения подачи дутья с крицы сгребали покрывающие ее шихтовые материалы и в отверстие в лицевой стене вставляли лом, а второй лом опускали в горн сверху. Действуя ломами как рычагами, крицу вынимали из горна по пологой выгнутой противофурменной стене.

В эпоху позднего Средневековья при нормальном ходе процесса извлечение железа из руды в крицу достигало 60-70% при расходе древесного угля 3-3,5 кг на 1 кг крицы. Получался низкоуглеродистый металл (менее 0,5% углерода).

Содержание оксида железа в шлаке было существенно ниже, чем при применении обычных сыродутных горнов: оно составляло 35—40%.

Каждый каталонский горн обслуживался бригадой из 8 человек. В состав бригады входили мастер, его помощник, следивший за работой воздуходувной техники, два плавильщика, обеспечивавшие процесс производства крицы, молотовой мастер с помощником, рабочий, готовивший шихтовые материалы к плавке, и весовщик, осуществлявший контроль за хранением, расходованием материалов и ведавший учетом готовой продукции.

Несмотря на кажущуюся простоту конструкции, каталонские горны находились в эксплуатации и после появления доменных печей, с которыми они конкурировали в Испании вплоть до середины XIX в. Секрет «долгожительства» каталонских горнов объясня-ется применением для их обслуживания начиная с XVII в. мощных водотрубных воздуходувок, или так называемых «тромп». Тромпа была изобретена итальянским инженером Джанбатиста делла Портой, и обеспечивала не только интенсивную, но и равномерную подачу дутья в металлургический агрегат.[3]

Штюкофены и осмундские печи

Теперь более подробно рассмотрим работу штюкофенов и осмун-дских печей. Отметим, что конструкция агрегатов была очень похожей, а основные различия заключались во внешнем «оформлении»: осмундские печи, как правило, заключались в деревянные срубы, а конструкция штюкофенов усиливалась снаружи каменной кладкой. Печи строили многогранного сечения, чаще всего в виде двух четырехгранных призм с общим большим основанием. Использова-лась одна фурма, которая устанавливалась горизонтально в нижней части печи таким образом, что ниже нее располагались лишь отверстия для выпуска из печи шлака.

11 стр., 5179 слов

Моделирование динамики щитовидной железы у детей школьного возраста

... метода математического моделирования можно дать оценку состоянию щитовидной железы у детей школьного возраста. Разработать математическую модель динамики объёма щитовидной железы у детей школьного возраста в зависимости от антропогенных показателей. 1. ...

Перед началом плавки внутреннее пространство печи обмазывали огнеупорной глиной и набивали угольным порошком. Затем производили «обжигание горна», которое заключалось в прогреве кладки путем сжигания дров и некоторого количества древесного угля. После этого печь наполовину загружали порцией древесного угля, перемешанного с небольшим количеством легкоплавкой железной руды. В результате плавления этой первой, или «задувочной», шихты стенки нижней части печи покрывались своеобразным защитным слоем — «гарнисажем». Только после такой длительной подготовки агрегата переходили собственно к процессу плавки.

Шихту готовили тщательно: куски руды, представлявшей собой красный или бурый железняк с содержанием железа около 50%, дробили до крупности гороха или лесного ореха; древесный уголь, требования к качеству которого непрерывно возрастали, измельчали до размера грецкого ореха. Оба компонента шихты отделяли от мелких частиц и пыли вручную. Печь наполовину заполняли древесным углем, а затем загрузку руды и угля производили последовательно горизонтальными слоями толщииой не более 10—12 см.

После воспламенения древесного угля в нижней части печи, где проходила реакция неполного горения углерода угля до монооксида углерода (СО), достигалась температура 1400—1450°С. На верху печи, на колошнике (название его происходит от слова «колоша», т. е. мера твердого сыпучего материала) температура отходящих газов, состоящих, в основном, из СО и азота, составляла 700-900°С. Вот почему отходящий газ при взаимодействии с кислородом воздуха воспламенялся и непрерывно горел в течение всей плавки. Основным механизмом восстановления железа из оксидов была их реакция с твердым углеро-дом, поэтому содержание СО2, образующегося при восстановлении железа монооксидом углерода, в отходящих газах было ничтожным.

Главной составляющей шлака, как и в обычных сыродутных горнах, был фаялит. Шлак содержал 45—50% монооксида железа, 25—35% кремнезема, 4-6% глинозема, до 5% извести и магнезии и до 15% монооксида марганца. Кроме того, в шлаке в значительных количествах присутствовали щелочи, фосфор (иногда более 1%) и сера. Железистые шлаки отличаются высокой жидкоподвижностью, поэтому они легко вытекали из печи через отверстия в стенках, расположенных несколько ниже уровня фурмы. Присутствие в рудах монооксида марганца, взаимодействовавшего с кремнеземом, облегчало восстановление железа и уменьшало его потери в ходе плавки.

В результате плавки получался металл с низким содержани-ем кремния (менее 0,05%), марганца (менее 0,5%) и фосфора (менее 0,01%).

Содержание углерода в различных участках крицы колебалось в широких пределах от 0,05 до 1,5%. Как известно, температура плавления низкоуглеродистого железа, составлявшего основную массу крицы, достигает 1480—1520°С, поэтому крица получалась твердой. Однако с повышением высоты печей и улучшением условий теплообмена содержание углерода в крице увеличивалось, и с начала 2-го тысячелетия ее часто извлекали из штюкофенов оплавленной.

6 стр., 2814 слов

Заболевания слюнных желез

... лимфоэпителиальные поражения, сиалоз, онкоцитоз у взрослых), встречаются менее чем в 5% случаев. Однако у детей около 50% опухолей слюнных желез могут быть представлены гемангиомой, лимфангиомой, ... При этом инфекция проникает в слюнные железы и их протоки гематогенным (при общих инфекционных заболеваниях), лимфогенным (при воспалительных процессах в челюстно-лицевой области), стоматогенным ...

Плавка продолжалась 4—6 часов, после чего раскаленную добела крицу клещами извлекали через пролом в передней стенке горна. Пролом делался в месте установки фурмы, что позволяло одновременно производить контроль состояния и при необходимости замену сопла дутьевого устройства. В крице оставались включения угля и шлака, составлявшие до 10% ее массы, поэтому ее уплотняли деревянными молотами, а затем тщательно проковывали кузнечным молотом для удаления шлака из мелких пор. Потери железа со шлаком и в результате отбраковки попрежнему оставались высокими и могли достигать половины от количества железа, попавшего в печь с рудой. Всего за сутки с учетом постоянного ремонта печи успевали произвести 2—4 крицы.

Высоким был и расход древесного угля: непосредственно на про-цесс экстракции железа из руды он составлял 3-4 кг на 1 кг «сырого» железа, еще столько же топлива требовалось сжечь при переработке сырца в товарный продукт. С учетом того, что при производстве древесного угля масса продукта составляла не более 15% от массы дров, общий расход высококачественной древесины на производство 1 кг железа достигал почти 50 кг. Потребность в древесном угле была столь высока, что к концу тысячелетия пришлось существенно усовершенствовать технологию его производства: от архаичного способа выжига в ямах перешли к более производительной и экономичной технологии получения продукта в кучах диаметром свыше 3 метров.

Штюкофены и осмундские печи обеспечивали самый высокий температурный уровень термических процессов раннего Средневеко-вья. Температура продуктов плавки (крицы и шлака) в них гарантированно достигала 1400°С, но условия науглероживания металла в печах все же еще не позволяли получать в них чугун. Нужен был еще один шаг, еще некоторое увеличение высоты агрегата, чтобы получить новое качество и новый продукт процесса, а именно высокоуглеродистый сплав — чугун. Этот шаг был сделан после появления печей шахтного типа — «домниц» (русское название) или «блауофенов» (немецкий термин) в начале XIV в.

То обстоятельство, что именно металлургическая индустрия обеспечивала наивысшие температуры в Средневековой промышленности, было хорошо известно современникам. У многих народов в это время появляются легенды о металлургах — пове-лителях огня (пламени).

Монополия на производство железа высокого качества была необходима эти странам, в то время активно осуществлявшим создание единых государств из многочисленных феодальных княжеств. Испания и Франция имели мощных внешних врагов, препятствовавших объединению государств: Испания осуществляла реконкисту (освобождение из-под многовекового арабского влияния), а Франция боролась за лидерство в регионе с Бургундским герцогством, на территории которого располагались Вогезы — важнейшая металлургическая провинция средневековой Европы.[2]

3. Современная металлургия

Современная металлургия включает в себя ряд основных технологических операций производства металлов и сплавов.

Сегодня добывающая металлургия развивается очень стремительно. Являясь одной из приоритетных государственных отраслей, металлургия не только поставляет материал для тысяч отечественных заводов, но и дает огромное количество рабочих мест по всей стране.

Сам процесс представляет собой добычу ценных горных руд и дальнейшая ее переработка, в результате которой сырье превращается в конечный продукт — чистый металл. При этом добыча делится на несколько категорий, в зависимости от которых может значительно меняться производство. К примеру, некоторые металлурги могут вырабатывать лишь различные концентраты (всевозможные оксиды, которые используются в других отраслях), другие же занимаются именно выплавкой металла.

21 стр., 10405 слов

Социально-экономическое развитие пореформеной Росcии

... капитализма как господствующей социально - экономической системы относится к концу XIX — началу XX в. Развитие же его происходило ... до отмены крепостного права. Однако утверждение капитала как экономической и социальной системы происходило уже в пореформенное ... 1861г., явились важным условием его более интенсивного развития. Здесь проявилась огромная роль политического фактора, воздействовавшего ...

Произведенные металлы очень широко используются повсеместно. Медные породы применяются в электротехническом производстве, в частности из меди изготавливаются различные проводы и кабели. Золото и его сплавы очень популярны у ювелиров, а железо обладает уникальной прочностью, которая важна в производстве различного транспорта.

Сплавы добытых металлов также находят свое место в промышленности. По своему составу сплавы могут состоять из нескольких производных, заменяя которые металлурги получают поистине уникальные материалы.

Естественно, любой сплав в своем составе содержит металл, следовательно обладает всеми характерными металлическими свойствами, такими как уникальный блеск, высокая теплопроводность и прочность. Здесь, однако, есть исключения — например, в сплав могут быть добавлены химические соединения, которые сильно изменят свойства исходного материала. Химическая и металлургическая промышленности идут рука об руку — это продиктовано бурным развитием современных технологий, которые требуют гораздо большего разнообразия характеристик.

Развитие современной металлургии, несмотря на ограничивающие его экономические явления, не останавливается ни на минуту. Основу современной черной металлургии составляют заводы, каждый из которых по территории и количеству работающих равняется небольшому городу.

Сложный путь проходит здесь металл. Сначала на горно-обогатительных комбинатах (ГОК) обогащают руду, затем на заводах черной металлургии ее обжигают, превращая в агломерат или окатыши. Из них в доменных печах выплавляют чугун. Затем чугун попадает в сталеплавильный цех, где его переплавляют в сталь в мартеновских печах, кислородных конверторах или электропечах. Стальные слитки транспортируют в прокатные цехи, где из них делают металлические изделия: рельсы, балки, листы, трубы, проволоку.

Между цехами проложены рельсы, по которым ходят железнодорожные составы, развозя руду и жидкий чугун, стальные слитки и готовый прокат.

Такой же, а в ряде случаев и более сложный путь проходят металлы и на заводах цветной металлургии. Технологический процесс получения некоторых цветных металлов включает десятки операций.[4]

Заключение

А что же ждет металлургию в будущем? Неужели человечеству, чтобы удовлетворить свои потребности в металле, придется постоянно строить гигантские заводы? Ведь не следует забывать, что металлургия в основном имеет дело с огнем: чтобы расплавить руду или сталь, их нужно нагреть до высокой температуры. А пирометаллургия сжигает кислород воздуха, засоряет атмосферу отходами сгорания, тратит много пресной воды на охлаждение агрегатов, чем наносит вред природе. Поэтому ученые разработали новые пути развития металлургии. Это, прежде всего, прямое восстановление железа из руды, минуя доменный процесс. Установки прямого восстановления, которые полностью автоматизированы и надежно герметизированы, будут выплавлять из руды металлические слитки или чистый железный порошок. А потом слитки или порошок, упакованный в контейнеры, доставят на машиностроительные заводы, где из них изготовят изделия либо обычным методом, либо методом порошковой металлургии. Эти заводы вовсе не обязательно делать такими огромными, как существующие. Наоборот, они будут маленькими и, как предполагают ученые, иногда мобильными, т. е. подвижными. На баржах или с помощью вертолетов их будут доставлять к небольшим месторождениям руды, разработка которых сейчас считается невыгодной. Мини-заводы, полностью автоматизированные, сделают разработку этих месторождений экономически целесообразной.

14 стр., 6737 слов

Деньги как экономическая ценность: философско-психологический аспект

... частных затрат труда. Отсюда вытекают три важных вывода, которые характеризуют сущность денег: во-первых, деньги — это исторически определенная, свойственная товарному производству форма экономических ... совокупность потребительских стоимостей (естественное, истинное богатство) и богатство как накопление денег. Богатство первого вида имеет предел, которой является потребление. Богатство, выраженное в ...

Быстрыми темпами развивается электрометаллургия, все более широкое применение находит электричество на всех последующих стадиях обработки металлов. На очереди — создание полностью автоматизированного металлургического производства, управляемого ЭВМ,— металлургические цехи-автоматы.

Список использованной литературы

[Электронный ресурс]//URL: https://psystars.ru/referat/filosofiya-metallurgii/

1.http://forexaw.com/TERMs/Industry/Metallurgical_Industry/l1018_%D0%9C%D0%B5%D1%82%D0%B0%D0%BB%D0%BB%D1%83%D1%80%D0%B3%D0%B8%D1%8F_Metallurgy_%D1%8D%D1%82%D0%BE

2. Бальшин М.Ю., Кипарисов С.С. Металлургия/ М.: Металлургия, 1978. — 184 с.

3. Голубев О.В. Металлургия запредельного/ Голубев О.В., Черноусов П.И. — М.: ООО ИД «Роликс», 2013. — 274 с.

4.Н.И. Новиков, Г.В. Новикова Особенности развития черной металлургии россии / Н.И. Новиков, Г.В. Новикова// Известия Иркутской государственной экономической академии -2011- №4- с.50-56

5. Металловеды / Составитель С. С. Черняк — Иркутск: Изд-во ИрГУ, 2000. — 532 с.