Глава 2. Современная научная картина мира
Основная форма человеческого познания — наука — в наши дни оказывает все более значимое и существенное влияние на реальные условия нашей жизни, в которой нам так или иначе надлежит ориентироваться и действовать. Философское видение мира предполагает достаточно определенные представления о том, что такое наука, как она устроена и как развивается, что она может и на что позволяет надеяться, а что ей недоступно.
У философов прошлого мы можем найти много ценных предвидений относительно усиливающегося значения науки. Однако они представить не могли такого массированного, подчас неожиданного и даже драматического воздействия научно-технических достижений на повседневную жизнь человека, которое приходится осмысливать сегодня. И такое осмысление целесообразно начать с рассмотрения социальных функций науки.
Социальные функции науки не есть нечто раз и навсегда заданное. Напротив, они исторически изменяются и развиваются, представляя собой важную сторону развития самой науки.
Современная наука во многих отношениях существенно, кардинально отличается от той науки, которая существовала столетие или даже полстолетия назад. Изменился весь ее облик и характер ее взаимосвязей с обществом.
2.1 Основные положения современной научной картины мира
2.1.1 Современная физическая картина мира
В построении физической картины мира обычно используются все новейшие достижения фундаментальной физики, причём неизменно увязываются масштабность астрофизики и «глубинность» физики вакуума и элементарных частиц.
Обоснованное предположение об информационно-фазовом состоянии среды физического вакуума качественно меняет сами принципы построения физической картины мира.
Всепроникающая информация, образуя единое информационное поле, впервые позволяет рассматривать экспериментальные возможности получения данных о материальных объектах вне Метагалактики.
Неизмеримо возрастают масштабы человеческого познания: от двух форм существования материи – вещества и поля наука приходит к возможности регистрации иных материальных субстанций. Полное естественнонаучное объяснение начинают получать не только явления типа «первовзрыва Вселенной» и «реликтового излучения», скрытой «массы» и взаимосвязи между собой «разлетающихся фотонов», но и, вероятно, основные физические понятия: масса, энергия, заряд, поле, квант и т.д.
Картина мира в психологии
... пожалуй, третье и не менее важное - это то, что ХХ в понял, что ни одна картина мира в принципе, взятая по отдельности, не является исчерпывающей (см. принцип дополнительности), ... обрисовать его К. м. в целом. Для этого сравним картину мира, характерную для ХIХ в., и - по контрасту - картину мира ХХ в. В целом, если сопоставить представления о мире ХIХ и ХХ вв., ...
Все предпосылки для этого в теории информационно-фазового состояния материальных систем практически уже заложены.
Электромагнитная среда физического вакуума это лишь «световая материя», другие формы существования материи ещё предстоит обнаружить.
Представление о мировом эфире как об упругой среде были необходимы для объяснения поперечного характера распространения в вакууме электромагнитных волн.
Информационно-фазовое состояние физического вакуума вследствие полевой информационной ретрансляции (ПИР) должно обладать свойством, аналогичным «упругости формы», поскольку каждая ячейка электромагнитной среды физического пространства после возмущения должна возвращаться в исходное положение соответственно своему энергетически кодовому расположению в матрице других ячеек. Если возмущение превышает стабилизационную энергию матрицы ячеек физического пространства, то происходит разрушение матрицы и преобразование электромагнитной среды (например, «рождение пары электрон-позитрон» и т.п.).
Неожиданное и фундаментальное добавление к представлениям, формирующим физическую картину мира, вносит анализ положения Д.И. Менделеева о химическом понимании мирового эфира.
В области классической физики и теории относительности ученые отмечают, что «в картине мира современной физики фундаментальную роль играет принцип эквивалентности, согласно которому поле тяготения в небольшой области пространства и времени (в которой его можно считать однородным и постоянным во времени) по своему проявлению тождественно ускоренной системе отсчета.
Принцип эквивалентности следует из равенства инертной и гравитационной масс. В соответствии с этим принципом общая теория относительности трактует тяготение как искривление (отличие геометрии от евклидовой) четырехмерного пространственно-временного континуума. В любой конечной области пространство оказывается искривленным — неевклидовым. Это означает, что в трехмерном пространстве геометрия, вообще говоря, будет неевклидовой, а время в разных точках будет течь по-разному.
Ряд выводов ОТО качественно отличаются от выводов ньютоновской теории тяготения. Важнейшие среди них связаны с возникновением черных дыр, сингулярностей пространства-времени, существованием гравитационных волн (гравитационного излучения)».
По утверждению ученых в области квантовой механики, «хотя дискуссии в отношении статуса вероятностных представлений в современной физике не закончены до сих пор, тем не менее, развитие квантовой механики ослабляет позиции сторонников лапласовского детерминизма».
В области изучения элементарных частиц «в современной физике фундаментальную роль играет релятивистская квантовая теория физических систем с бесконечным числом степеней свободы — квантовая теория поля. Эта теория построена для описания одного из самых общих свойств микромира — универсальной взаимной превращаемости элементарных частиц. Для описания такого рода процессов требовался переход к квантовому волновому полю. Квантовая теория поля с необходимостью является релятивистской, поскольку если система состоит из медленно движущихся частиц, то их энергия может оказаться недостаточной для образования новых частиц с ненулевой массой покоя. Частицы же с нулевой массой покоя (фотон, возможно нейтрино) всегда релятивистские, т.е. всегда движутся со скоростью света»[5].
Информационная безопасность и ее составляющие
... говорить об информационной безопасности, как так, личности и организации или государства. Сейчас технологии компьютерные используются в самых важных областях деятельности человеческой. ... и самой сети Основные. Интернет составляющие информационной безопасности. Информационная многогранная безопасность, можно даже сказать, многомерная деятельности область, в которой успех может принести системный ...
2.1.2 Химическая картина мира
Отсутствие в химии теоретических основ, позволяющих точно предсказывать и рассчитывать протекание химических реакций, не позволяло ставить её в ряд с науками, обосновывающими само бытие. Поэтому высказывание Д.И. Менделеева о химическом понимании мирового эфира не только не было востребовано в начале 20 века, но и оказалось незаслуженно полностью забыто на целое столетие. Связано ли это с тогдашним революционным переворотом в физике, который захватил и увлёк большинство умов в 20 веке в изучение квантовых представлений и теории относительности, сейчас уже не так важно. Жаль только, что выводы гениального учёного, к тому же признанного в то время, не пробудило качественно другие философско-методологические принципы, отличные от философских принципов, которые, кстати, в изобилии фигурировали в рассуждениях физиков.
Объяснение столь нежелательного забвения, скорее всего, связано с распространением редукционистских течений, вызванных возвеличением физики. Именно сведение химических процессов к совокупности физических как бы прямо указывало на ненужность химических воззрений при анализе первооснов бытия. Кстати, когда химики пытались защитить специфику своей науки доводами о статистическом характере химических взаимодействий в отличие большинства взаимодействий в физике, обусловленных динамическими законами, физики тут же указывали на статистическую физику, которая якобы более полно описывает подобные процессы.
Специфика химии терялась, хотя наличие строгой геометрии связей взаимодействующих частиц в химических процессах вносило в статистическое рассмотрение специфический для химии информационный аспект.
Анализ сущности информационно-фазового состояния материальных систем резко подчёркивает информационный характер химических взаимодействий. Вода как химическая среда, оказавшись первым примером информационно-фазового состояния материальных систем, соединила в себе два состояния: жидкое и информационно-фазовое именно по причине близости химических взаимодействий к информационным.
Вакуум как электромагнитная среда физического пространства, проявившая свойства информационно-фазового состояния, скорее всего, ближе к среде, в которой протекают процессы, по форме напоминающие химические. Поэтому химическое понимание мирового эфира Д.И. Менделеева становится чрезвычайно актуальным. Давно замеченное терминологическое совпадение при описании соответствующих процессов превращения частиц в химии и в физике элементарных частиц как реакций дополнительно подчёркивает роль химических представлений в физике.
Предполагаемая взаимосвязь между информационно-фазовыми состояниями водной среды и электромагнитной среды физического вакуума свидетельствует о сопутствующих химическим процессам изменениях в физическом вакууме, что, вероятно, и ощущал Д.И. Менделеев в своих экспериментах.
Следовательно, в вопросе о природе мирового эфира химия в каких-то моментах выступает даже определяющей по отношению к физическому воззрению.
Современная философская картина мира
... космосу. Философские картины мира многообразны, но все они строятся вокруг отношения мир - человек. У каждой картины мира есть свой смысловой центр, вокруг которого располагаются все компоненты, составляющие целостный образ Вселенной. 2. Картина мира ...
Поэтому говорить о приоритете физических или химических представлений в выработке научной картины мира, вероятно, не стоит.
2.1.3 Биологическая картина мира
Существующее разделение на живую и неживую природу как бы заранее отрицало даже саму возможность переноса «живого» в разряд фундаментальных основ мироздания. Представить в фундаменте всего сущего нечто живое означало признание бога. Это никак не вписывалось в понятие научной картины мира, которая с самого начала противопоставлялась божественному происхождению мира. Компромиссы, правда, встречались с обеих сторон: как в виде глубоко верующих учёных, что не всегда воспринималось в качестве личного убеждения, независимого от научных взглядов, так и в виде использования теологами современных фактов естествознания, например, рассмотрения явления «первовзрыва Вселенной» как подтверждения одноактового создания мира творцом.
Выход на всеобщий фундаментальный уровень таких близких биологии понятий как информация в живых системах (за счёт обнаруженной информационной взаимосвязи информационно-фазовых состояний водной среды и среды физического вакуума), а также такого её свойства как комплементарность, без которой оказалось невозможным говорить о способах передачи информации (т.е., о молекулярной и полевой информационной ретрансляции), впервые позволило увериться в необходимости присутствия этих биологических категорий при построении целостной картины мира.
Анализ информационно-фазового состояния материальных систем показывает, что без информационного начала единой картины мира представить уже невозможно.
Следовательно, вхождение живого и разумного в разряд первооснов мироздания определяет роль биологической картины мира в построении общей научной картины мира.
2.1.4 Астрономическая картина мира
В ХХ веке в астрономии произошла подлинная революция.
В последние годы, благодаря космическим телескопам, удалось достичь еще более высокого качества в составлении звездных карт. С помощью Хаббловского космического телескопа астрономы составили каталог, описывающий около 15 миллионов звезд. Самое последнее достижение в составлении звездных карт – это два новых каталога, изданных ныне Европейским космическим агентством. Они сделаны на основе наблюдений при помощи космического телескопа на спутнике «Гиппаркос». На сегодняшний день эти каталоги самые точные; один из них в трех томах называется «Тысячелетний звездный атлас» («Millennium Star Atlas»).
Современные телескопы позволяют наблюдать галактики, удаленные от Земли на расстояние 13,5 миллиардов световых лет. Были зафиксированы впервые совершенно новые космические объекты и процессы, что привело к появлению альтернативных космологических моделей – сейчас их насчитывается уже несколько десятков. С 90-х годов ХХ века открытия в астрономии следуют буквально одно за другим [4].
В июле 1994 года впервые наблюдалось взаимодействие кометы с планетой (Юпитером), в результате чего ядро кометы рассыпалось на 21 фрагмент, которые врезались в планету. Это – реальный космический Апокалипсис, снятый астрономами с помощью телевидения.
До 1995 года Вселенная представлялась безводной пустыней. Исследования, проведенные в 1996…1998 годах, показали, что вода присутствует во всех частях Вселенной и, видимо, помогает газопылевым облакам конденсироваться, отводя от них тепло и способствуя образованию планет.
Картина мира в представлении Аристотеля
... Таким образом, в картине Мира Аристотеля была высказана (по-видимому, впервые) идея взаимосвязанности материи, пространства и времени.. За пределами Вселенной, где уже ... нет ни материи, ни пространства, ни времени, помещается нематериальный (духовный) Божественный Мир. По учению Аристотеля, Вселенная ...
Исследование звезды CW в созвездии Льва в 2001 году, например, показало, что в окружающем этот красный гигант пространстве воды содержится в 10 тысяч раз больше, чем предполагалось. В июне 2001 года данные, собранные зондом, позволяют утверждать, что средняя температура Вселенной составляет 2,735 К, а возраст нашей Вселенной – 13,7 миллиардов лет; обычной материи в ней, из которой состоят звезды и планеты, всего 4%, а вот темной материи – частиц, не испускающих видимого излучения, 23%; на темную энергию приходится 73%. Вселенная однородна, а это означает, что Большого взрыва не было, ибо молодая Вселенная была бы намного сложнее.
Гипотеза Большого взрыва уже не раз подвергалась сомнению. Анализ снимка глубокого космоса, полученного с помощью телескопа «Хаббл» 24 сентября 2004 года, также не подтвердил концепцию Большого взрыва. Существующая модель описания Вселенной признает факт ее расширения, несмотря на то, что он подтвержден только изменением красного смещения излучения удаленных объектов. Других фактов, подтверждающих это, нет. Красное смещение спектров удаленных галактик было впервые обнаружено американским астрономом Венсоном Слайфордом в 1922 году, а позже Эдвин Хаббл установил линейную зависимость этого смещения от расстояния наблюдателя до объекта (закон Хаббла).
В рамках нестационарных моделей.
Вселенной данное явление интерпретируется как эффект Доплера, обусловленный расширением Вселенной.
Именно этот вывод дал основание для выдвижения гипотезы о существовании «черных дыр», куда все исчезает, что может привести Вселенную со временем к точечному вырождению. Но космологическое красное смещение можно понимать иначе – как результат взаимодействия фотонов с фоном гравитонов (Иванов М.А.).
В этом случае постоянная Хаббла не имеет никакого отношения к скорости расширения и возрасту Вселенной, которая интерпретируется в данном случае как стационарная.