Биохимия нервной ткани. Биохимия нервной ткани

Содержание скрыть

Подборка по базе: , Анатомия, ММС, л.1 Ткани Кровь.docx , Задачи биохимия экзамен.docx , Задачи биохимия экзамен.docx , Реферат Виды печати на ткани.docx , Биохимия жировой ткани.pdf , 1 Чувствительная функция нервной системы.docx , топ 19-14 Шынасылова Меруерт биохимия практика 11.docx , Реферат Биохимия углеводов в организме человека.docx , Особенности высшей нервной деятельности. Память. Сон. Эмоции. Си


Биохимия нервной ткани

Нейрон По своему соcтаву и процессам метаболизма нервная ткань значительно отличается от других тканей.

Центральная функциональная клетка нервной ткани — нейрон — связана с помощью дендритов и аксонов с такими же клетками и клетками других типов , например, с секреторными и мышечными клетками. Клетки разделены синаптическими щелями. Связь между клетками осуществляется путем передачи сигнала. Сигнал проходит от тела нейрона по аксону до синапса. В синаптическую щель выделяется вещество-медиатор. Медиатор вступает в связь с рецепторами на другой стороне синаптической щели. Это обеспечивает восприятие сигнала и генерацию нового сигнала в клетке-акцепторе.

2. Функции нервной ткани

2. Проведение нервного импульса.

3. Запоминание и хранение информации.

4. Формирование эмоций и поведения.

5. Мышление.

3. Особенности химического состава и метаболизма нервной ткани

4. Липиды нервной ткани

1. Структурная: входят в состав клеточных мембран нейронов.

2. Функция диэлектриков (обеспечивают надежную электрическую изоляцию).

3. Защитная. Ганглиозиды являются очень активными антиоксидантами — ингибиторами перекисного окисления липидов (ПОЛ).

При повреждении ткани мозга ганглиозиды способствуют ее заживлению.

4. Регуляторная. Фосфатидилинозиты являются предшественниками биологически активных веществ.

Большая часть липидов нервной ткани находится в составе плазматических и субклеточных мембран нейронов и в миелиновых оболочках. В нервной ткани по сравнению с другими тканями организма содержание липидов очень высокое.

Особенность липидного состава нервной ткани: есть фосфолипиды (ФЛ), гликолипиды (ГЛ) и холестерин (ХС), нет нейтральных жиров. Эфиры холестерина можно встретить только в участках активной миелинизации. Сам холестерин синтезируется интенсивно только в развивающемся мозге. В мозге взрослого человека низка активность ОМГ-КоА-редуктазы — ключевого фермента синтеза холестерина. Содержание свободных жирных кислот в мозге очень низкое.

11 стр., 5212 слов

Реферат по гистологии нервная ткань

... способны образовываться из тканей мезенхимы . По сути, они являются фагоцитарными клетками, разбросанными по всему мозгу, обеспечивающими защитные функции. Нервные волокна и их окончания Нервные волокна – это отростки нейронов. Гистология предопределяет их классификацию. ...

Некоторые нейромедиаторы после взаимодействия со специфическими рецепторами изменяют свою конформацию и изменяют конформацию фермента фосфолипазы С, которая катализирует расщепление связи в фосфатидилинозите между глицерином и остатком фосфата, в результате чего образуется фосфоинозитол и диацилглицерин. Эти вещества являются регуляторами внутриклеточного метаболизма. Диацилглицерин активирует протеинкиназу С, а фосфоинозитол вызывает повышение концентрации Са 2+ . Ионы кальция влияют на активность внутриклеточных ферментов и участвуют в работе сократительных элементов нервных клеток: микрофиламентов, что обеспечивает передвижение различных веществ в теле нервной клетки, аксоне и растущем кончике аксона. Протеинкиназа С участвует в реакциях фосфорилирования белков внутри нервных клеток. Если это белки-ферменты, то меняется их активность, если это рибосомальные или ядерные белки, то изменяется скорость биосинтеза белков.

Липиды постоянно обновляются. Скорость их обновления различна, но в целом низка. Некоторые липиды(например: холестерин, цереброзиды, фосфатидилэтаноламины, сфингомиелины) обмениваются медленно — в течение месяцев и даже лет.

Исключение составляют фосфатидилхолин и, особенно, фосфатидилинозиты (содержат глицерин, фосфат, спирт (инозит), жирные кислоты) — они обмениваются очень быстро (сутки, недели).

Синтез цереброзидов и ганглиозидов протекает с большой скоростью в развивающемся мозге в период миелинизации. У взрослых почти все цереброзиды (до 90 %) находятся в миелиновых оболочках, а ганглиозиды — в нейронах.

Нуклеиновые кислоты.

В клетках нервной ткани не могут синтезироваться пиримидины (в нервной ткани отсутствует фермент карбамоилфосфатсинтаза).

Пиримидины обязательно должны поступать из крови — гематоэнцефалический барьер для них проницаем. Гематоэнцефалический барьер легко проницаем и для пуриновых мононуклеотидов , но, в отличие от пиримидиновых, они могут синтезироваться в нервной ткани.

В нервной ткани, так же, как и в других, нуклеиновые кислоты обеспечивают хранение и передачу генетической информации и ее реализацию при синтезе клеточных белков.

Например, сильные раздражители: громкие звуки, сильные зрительные стимулы и эмоции приводят к повышению скорости синтеза и РНК, и белка в определенных участках мозга. Это указывает на то, что изменения в нервной системе, отражающие индивидуальный опыт организма, кодируются в виде синтезированных макромолекул.

Информация, благодаря которой нейроны устанавливают только определенные связи с определенными нейронами, кодируется в структуре полисахаридных веточек мембранных гликопротеинов. Образование таких связей, не заложенных в период эмбрионального развития, является результатом опыта индивидуального организма и составляет материальную основу для хранения информации, определяющей особенности поведения данного организма.

Метаболизм углеводов и особенности энергетического обеспечения нервной ткани

4 стр., 1544 слов

Микроструктура нервной ткани. Виды нервных клеток, их строение и функции

... и определяется гистофизиологическое значение нервной ткани в корреляции и интеграции тканей, органов, систем организма и его адаптации. Источником развития нервной ткани является нервная пластинка, представляющая собой дорзальное ... К эфферентным нейронам относятся двигательные нейроны (мотонейроны) передннх рогов спинного мозга, имеются также и особые неросекреторные нейроны (в ядрах гипоталамуса), ...

В нервной ткани, составляющей только 2 % от массы тела человека, потребляется 20 % кислорода, поступающего в организм. При этом энергетические возможности нервной ткани ограничены.

1. Основной путь получения энергии — только аэробный распад глюкозы по ГБФ-пути. Глюкоза является почти единственным энергетическим субстратом, поступающим в нервную ткань, который может быть использован ее клетками для образования АТФ.

2. Проникновение глюкозы в ткань мозга не зависит от действия инсулина , который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах.

3. Постоянный и непрерывный приток глюкозы и кислорода из кровеносного русла является необходимым условием энергетического обеспечения нервных клеток. Жесткая зависимость от поступления глюкозы обусловлена тем, что содержание гликогена в нервной ткани ничтожно (0,1 % от массы мозга) и не может обеспечить мозг энергией даже на короткое время. С другой стороны, окисления неуглеводных субстратов с целью получения энергии не происходит. Поэтому при гипогликемии и/или даже кратковременной гипоксии в нервной ткани образуется мало АТФ. Следствием этого являются быстрое наступление коматозного состояния и необратимых изменений в ткани мозга.

4. Высокая скорость потребления глюкозы нервными клетками обеспечивается, в первую очередь, работой высокоактивной гексокиназы мозга. В отличие от других тканей, здесь гексокиназа не является ключевым ферментом всех путей метаболизма глюкозы. Гексокиназа мозга отличается низким значением Км и высокой Vmax, обладает в 20 раз большей активностью, чем соответствующий изофермент печени и мышц. Ключевыми ферментами ГБФ-пути в нервной ткани являются фосфофруктокиназа и изоцитратдегидрогеназа. Фосфофруктокиназу ингибируют фруктозо-1,6-бисфосфат, АТФ и цитрат, активируют фруктозо-6-фосфат, АДФ, АМФ и неорганический фосфат. Активность изоцитрат ДГ даже при нормальном уровне утилизации глюкозы в состоянии покоя максимальна. Поэтому при повышенном энергопотреблении нет возможностей ускорения реакций цикла трикарбоновых кислот.

5. Образование НАДФН, Энергия АТФ в нервной ткани используется неравномерно во времени.

Так же, как и скелетные мышцы, функционирование нервной ткани сопровождается резкими перепадами в потреблении энергии. Резкое повышение энергозатрат происходит при очень быстром переходе от сна к бодрствованию. Поэтому существует еще одна особенность.

6. Образование креатинфосфата. Он обладает способностью удерживать макроэргические связи.

Эта реакция полностью обратима, ее направление зависит от соотношения АТФ/АДФ в клетках нервной ткани. Во время сна накапливается фосфокреатин. Переход к бодрствованию приводит к резкому уменьшению концентрации АТФ — равновесие реакции сдвигается влево, т. е. образуется АТФ.

Метаболизм аминокислот и белков

Ткань мозга интенсивно обменивается аминокислотами с кровью. Для этого существует специальные транспортные системы: две для незаряженных и еще несколько — для аминокислот, заряженных положительно и отрицательно.

7 стр., 3368 слов

Патология нервной деятельности . патология нервной системы студент ...

... мозге (главным образом в белом веществе) рассеянных очагов демиелинизации, в которых происходит разрастание глии с формированием очагов склероза - бляшек. Рассеянный склероз - частое заболевание нервной системы. ... расстройствами , возможно и легкое течение с незначительной дисфункцией центральной нервной системы и быстрым ее восстановлением. Этиология и патогенез. Хорошо изучен морфогенез ...

До 75 % от общего количества аминокислот нервной ткани составляют аспартат, глутамат, а также продукты их превращений или вещества, синтезированные с их участием (глутамин, ацетильные производные, глутатион, ГАМК и другие).

Их концентрации, и, в первую очередь, концентрация глутамата, в нервной ткани очень высоки. Например, концентрация глутаминовой кислоты может достигать 10 ммоль/л.

Функции глутамата в нервной ткани следующие.

1. Энергетическая. Глутаминовая кислота связана большим числом реакций с промежуточными метаболитами цикла трикарбоновых кислот.

2. Глутамат (вместе с аспартатом) принимает участие в реакциях дезаминирования других аминокислот и временном обезвреживании аммиака.

3. Из глутамата образуется нейромедиатор ГАМК.

4. Глутамат принимает участие в синтезе глутатиона — одного из компонентов антиоксидантной системы организма.

Глутаминовая кислота по праву занимает центральное место в обмене аминокислот мозга. Она используется для образования глутатиона , глутамина и гамма-аминомасляной кислоты. Образуется глутамат из своего кетоаналога — -кетоглутаровой кислоты в ходе реакции трансаминирования. Реакция превращения -КГ в глутамат протекает в ткани мозга с большой скоростью. Образующийся при этом глутамат являетя для цикла трикарбоновых кислот побочным продуктом. Большое расходование -КГ восполняется за счет превращения аспарагиновой кислоты в метаболит цикла трикарбоновых кислот — щавелевоуксусную кислоту.

Образующаяся из глутамата ГАМК в результате нескольких реакций может быть превращена снова в щавелевоуксусную кислоту. Так образуется ГАМК-шунт, имеющийся в тканях головного и спинного мозга. Поэтому в этих тканях содержание ГАМК, как промежуточного метаболита циклического процесса, значительно выше, чем в остальных. На образование ГАМК здесь используется до 20 % от общего количества глутамата.

Остальные пути метаболизма аминокислот сходны с имеющимися в других тканях.

До сих пор непонятным остается наличие в мозге почти полного набора ферментов орнитинового цикла, не содержащего карбамоилфосфатсинтазы, из-за чего мочевина здесь не образуется.

Ткань мозга способна синтезировать заменимые аминокислоты, как и другие ткани.

5. Нейромедиаторы

Нейромедиаторы — это вещества, которые характеризуются следующими признаками.

1. Накапливаются в пресинаптической структуре в достаточной концентрации.

2. Освобождаются при передаче импульса.

3. Вызывают после связывания с постсинаптической мембраной изменение скорости метаболических процессов и возникновение электрического импульса.

4. Имеют систему для инактивации или транпортную систему для удаления из синапса, обладающие к ним высоким сродством.

Таким образом, нейромедиаторы играют важную роль в функционировании нервной ткани, обеспечивая синаптическую передачу нервного импульса. Их синтез происходит в теле нейронов, а накопление — в особых везикулах, которые постепенно перемещаются с участием систем нейрофиламентов и нейротрубочек к кончикам аксонов.

13 стр., 6150 слов

Нейроны. Общая характеристика. Строение. Функции. Нейросекреторные нейроны

... вещество). По мере дифференцировки нейробласта, изменяется субмикроскопическое строение его ядра и цитоплазмы. Специфическим признаком начавшейся специализации нервных клеток следует считать появление в их цитоплазме ... нейрона способствует синтез в его аксоплазме веществ-передатчиков — нейромедиаторов (нейротрансмиттеры): ацетилхолина, катехоламинов и др. Размеры нейронов колеблются от 6 до 120 мкм. ...

Химическая классификация нейромедиаторов

Аминокислоты (и их производные)

К ним относят таурин, норадреналин, ДОФАминГАМК, глицин, ацетилхолин, гомоцистеин и некоторые другие (адреналин, серотонин, гистамин, серотонин).

Таурин

Таурин образуется из аминокислоты цистеина. Сначала происходит окисление серы в SH-группе до остатка серной кислоты (процесс идет в несколько стадий), а затем происходит декарбоксилирование. Таурин — это необычная кислота, в которой нет карбоксильной группы, а имеется остаток серной кислоты.

Таурин принимает участие в проведении нервного импульса в процессе зрительного восприятия., Ацетилхолин

Для синтеза холина требуются аминокислоты серин , метионин. Этаноламин может быть использован и в готовом виде. Но, как правило, из крови в нервную ткань пступает уже готовый холин. Второй же предшественник этого нейромедиатора — Ацетил-КоА, синтезируется в нервных окончаниях.

Продукт этой реакции ацетилхолин участвует в синаптической передаче нервного импульса. Он накапливается в синаптических пузырьках, образуя комплексы с отрицательно заряженным белком везикулином. Передача возбуждения с одной клетки на другую осуществляется с помощью специального синаптического механизма.

Синапс — это функциональный контакт специализированных участков плазматических мембран двух возбудимых клеток. Синапс состоит из пресинаптической мембраны, синаптической щели и постинаптической мембраны. Мембраны клеток в месте контакта имеют утолщения в виде бляшек — нервных окончаний. Нервный импульс, достигший нервного окончания, не в состоянии преодолеть возникшее перед ним препятствие — синаптическую щель. После этого электрический сигнал преобразуется в химический. Пресинаптическая мембрана содержит специальные канальные белки, подобные белкам, формирующим натриевый канал в мембране аксона. Они тоже реагируют на мембранный потенциал, изменяя свою конформацию и формируют канал. В результате ионы Са 2+ проходят через пресинаптическую мембрану по градиенту концентраций в нервное окончание. Градиент концентраций Са 2+ создается работой Са 2+ -зависимой.

АТФазы — кальциевым насосом. Повышение концентрации Са 2+ внутри нервного окончания вызывает слияние 200-300 имеющихся там везикул, заполненных ацетилхолином, с плазматической мембраной. Далее ацетилхолин секретируется в синаптическую щель путем экзоцитоза, и присоединяется к рецепторным белкам, расположенным на поверхности постсинаптической мембраны.

29 стр., 14181 слов

Психофизиология памяти. Нарушения памяти у больных алкоголизмом

... неразрешимых мировых загадок. Э. Дюбуа-Реймон 1. Предмет и задачи психофизиологии Рассмотрение проблем памяти как психической функции в контексте курсовой работы предполагает соприкосновение ... заболевание, которое, благодаря воздействию этанола, затрагивает все высшие психические функции, вызывая серьезные анатомические изменения в коре головного мозга. Деструктивное влияние хронического ...

Ацетилхолиновый рецептор

При взаимодействии с ацетилхолином белок-рецептор так изменяет свою конформацию, что внутри него формируется натриевый канал. Катионная селективость канала обеспечивается тем , что ворота канала сформированы отрицательно заряженными аминокислотами. Таким образом повышается проницаемость постсинаптической мембраны для натрия и возникает новый импульс (или сокращение мышечного волокна).

Деполяризация постсинаптической мембраны выеывает диссоциацию комплекса «ацетилхолин-белок-рецептор» и ацетилхолин освобождается в синаптическую щель. Как только ацетилхолин оказывается в синаптической щели, он за 40 мкс подвергается быстрому гидролизу под действием фермента ацетилхолинэстеразы.

Во время гидролиза ацетилхолина образуется промежуточный фермент-субстратный комплекс, в котором ацетилхолин связан с активным центром фермента через серин.

Необратимое ингибирование холинэстеразы вызывает смерть. Ингибиторами холинэстеразы являются фосфорорганические соединения (хлорофос, дихлофос, табун, зарин, зоман, бинарные яды).

Эти вещества связываются ковалентно с серином в активном центре фермента. Некоторые из них синтезированы в качестве инсектицидов, а некоторые — в качестве боевых отравляющих веществ (нервно-паралитические яды).

Смерть наступает в результате остановки дыхания.

Обратимые ингибиторы холинэстеразы используются как лечебные препараты. Например, при лечении глаукомы и атонии кишечника.

Катехоламины, Норадреналин

Дофамин — медиатор проводящих путей, тела нейронов которого расположены в отделе мозга, который отвечает за контроль произвольных движений. Поэтому при нарушении дофаминэргической передачи возникает заболевание паркинсонизм.

Катехоламин

Передача сигнала в адренэргических синапсах протекает по механизму, известному Вам из лекций по теме «Биохимия гормонов» с участием аденилатциклазной системы. Связывание медиатора с постсинаптическим рецептором почти мгновенно вызывает повышение концентрации ц-АМФ, что приводит к быстрому фосфорилированию белков постсинаптической мембраны. В результате изменяется генерация нервных импульсов постсинаптической мембраной (тормозится).

В некторых случаях непосредственной причиной этого является повышение проницаемости постсинаптической мембраны для калия, либо снижением проводимости для натрия (эти события приводят к гиперполяризации).

ГАМК — тормозной медиатор. Повышает проницаемость постсинаптических мембран для ионов калия. Это ведет к изменению мембранного потенциала.

Глицин — тормозной медиатор, по вызываемым эффектам подобен гамк.

Пептиды

Имеют в своем составе от трех до нескольких десятков аминокислотных остатков. Функциониуют только в высших отделах нервной системы.

Эти пептиды, как и катехоламины, выполняют функцию не только нейромедиаторов , но и гормонов. Передают информацию от клетки к клетке по системе циркуляции. Сюда относятся:

2 стр., 880 слов

Миелинизация нервных волокон

... пресинаптической мембраной одного нейрона и постсинаптический полюс с постсинаптической мембраной (другого ... Нервные окончания Нервные волокна заканчиваются концевыми нервными аппаратами, называемыми нервными окончаниями(terminationes nervorum).Различают три вида нервных окончаний: эффекторы (эффекторные), рецепторы ... синапсы) и ацетилхолин в холинэргических синапсах (светлые синапсы). Нервный импульс в ...

а) нейрогипофизарные гормоны (вазопрессин, либерины, статины).

Эти вещества одновременно и гормоны и медиаторы;

б) гастроинтестинальные пептиды (гастрин, холецистокинин).

Гастрин вызывает чувство голода, холецистокинин вызывает чувство насыщения, а также стимулирует сокращение желчного пузыря и функцию поджелудочной железы;

в) опиатоподобные пептиды (или пептиды обезболивания).

Образуются путем реакций ограниченного протеолиза белка-предшественника проопиокортина. Взаимодействуют с теми же рецепторами, что и опиаты (например, морфин), тем самым имитируют их действие. Общее название — эндорфины — вызывают обезболивание. Они легко разрушаются протеиназами, поэтому их фармакологический эффект незначителен;

г) пептиды сна. Их молекулярная природа не установлена. Известно лишь, что их введение животным вызывает сон;

д) пептиды памяти (скотофобин).

Накапливается в мозге крыс при тренировке на избегание темноты;

е) пептиды — компоненты ренин-ангиотензиновой системы. Показано, что введение ангиотензина-II в центр жажды головного мозга вызывает появление этого ощущения и стимулирует секрецию антидиуретического гормона.

Образование пептидов происходит в результате реакций ограниченного протеолиза, разрушаются также под действием протеиназ.